
Fast Interpolation and Approximation of Scattered Multidimensional
and Dynamic Data Using Radial Basis Functions

VACLAV SKALA

Department of Computer Science and Engineering
University of West Bohemia, Faculty of Applied Sciences

Univerzitni 8, CZ 306 14 Plzen
Czech Republic

http://www.VaclavSkala.eu

Abstract: Interpolation or approximation of scattered data is very often task in engineering problems. The
Radial Basis Functions (RBF) interpolation is convenient for scattered (un-ordered) data sets in k-dimensional
space, in general. This approach is convenient especially for a higher dimension k > 2 as the conversion to an
ordered data set, e.g. using tessellation, is computationally very expensive. The RBF interpolation is not
separable and it is based on distance of two points. It leads to a solution of a Linear System of Equations (LSE)
𝑨𝒙 = 𝒃. There are two main groups of interpolating functions: ‘global” and “local”. Application of “local”
functions, called Compactly Supporting RBF (CSFBF), can significantly decrease computational cost as they
lead to a system of linear equations with a sparse matrix.

In this paper the RBF interpolation theory is briefly introduced at the “application level” including some
basic principles and computational issues and an incremental RBF computation is presented and approximation
RBF as well.

The RBF interpolation or approximation can be used also for image reconstruction, inpainting removal, for
solution of Partial Differential Equations (PDE), in GIS systems, digital elevation model DEM etc.

Key-Words: - Radial basis function, RBF interpolation, image reconstruction, incremental computation, RBF
approximation, fast matrix multiplication

1 Introduction
Interpolation and approximation are probably the
most frequent operations used in computational
techniques. Several techniques have been developed
for data interpolation, but they expect some kind of
data “ordering”, e.g. structured mesh, rectangular
mesh, unstructured mesh etc. The typical example is
a solution of partial differential equations (PDE)
where derivatives are replaced by differences and
rectangular or hexagonal meshes are used in the vast
majority of cases. However in many engineering
problems, data are not ordered and they are
scattered in k -dimensional space, in general.
Usually, in technical applications the scattered data
are tessellated using triangulation but this approach
is quite prohibitive for the case of k-dimensional
data interpolation because of the computational cost.

An interesting technique is k-dimensional data
interpolation using Radial Basis Functions (RBF).
The RBF interpolation is computationally more
expensive because interpolated data are not ordered,
but offers quite interesting applications at acceptable
computational cost, e.g. solution of partial
differential equations, image reconstruction, neural

networks, fuzzy systems, GIS systems, optics and
interferometry etc.

2 Problem Formulation
Interpolation is very often used and mostly linear
interpolation is used in technical applications. Let us
analyze first different types of data to be processed.
Also there is a question whether the Euclidean space
representation is the best for computing and
engineering applications. It is well known that the
division operation is very dangerous in numerical
computations and causes severe problems in
numerical methods. Also it is known that
computations can be made in the projective
extension of the Euclidean space [20] [21] [23] [27].
The projective formulation of numerical problems
leads to very interesting questions, e.g. an explicit
solution of LSE is equivalent to the cross-product,
like why the division operation in the Gauss-Seidel
or similar methods is needed [21]? The projective
space representation and the principle of duality also
help to solve some problems more efficiently [19]
[20] [25]. Also Non-rational uniform B-Splines

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 501 Issue 5, Volume 12, May 2013

http://www.vaclavskala.eu/�

(NURBS) are actually curves or surfaces defined
using the projective extension of the Euclidean
space.

In the following we use the Euclidean space
representation to explain the fundamental principles
and we will explore incremental computation of
RBF interpolation and approximation, as well.

3 Data Classification

Before analyzing methods for interpolation, it is
reasonable to classify data to be processed. It seems
to be simple, but let us explore it more deeply.
Generally, the data can be represented by:
1. Coordinates, e.g. by points {𝒙𝑖}1𝑀 in computer

graphics, which forms triangular mesh in E2 or
represent a surface of an object in E3.

2. Coordinates and associated values {〈𝒙𝑖 ,𝒉𝑖〉}1𝑀 ,
e.g. coordinates of points 𝒙𝑖 associated with
vector values 𝒉𝑖 with each point or associated
with scalar values (potential field), e.g.
representing temperatures etc..
The dimensionality of a vector of

coordinates 𝑑𝑖𝑚(𝒙𝑖) = k , i.e. 𝒙𝑖 = [𝑥1, … , 𝑥𝑘]𝑇 ,
while the dimensionality of a vector of values
𝑑𝑖𝑚(𝒉𝑖) = 𝑝, i.e. 𝒉𝑖 = �ℎ1, … , ℎ𝑝�

𝑇
.

It can be seen that those two cases are quite
different cases if an interpolation is to be used. Also
data can be:

• hierarchical
• non-hierarchical

or
• adaptive to some physical phenomena
• non-adaptive

and
• static
• dynamic (t-variant) in coordinates 𝒙𝑖 or in

values 𝒉𝑖 or both!
In a selection of an interpolation technique we

have to respect if they are “ordered” or “un-ordered”
as well. Then the data sets can be classified as
follows.

• Un-ordered - Scattered

- Clustered

• Ordered - Unstructured
- Structured

- Non-regular
- Semi-regular
- Regular

Table 1: A simple classification of data

In the case of un-ordered data, mostly some
tessellation techniques like triangulation in the E2
case or tetrahedronization in the E3 case are used
and generally an unstructured mesh is obtained.

The semi-regular mesh is obtained just in the
case when data are ordered in a rectangular grid and
Delaunay triangulation is used. It should be noted
that this is a very unstable situation, as due to some
small shifts in coordinates, the tessellation can be
totally changed.

Interpolation techniques on “ordered” data sets
are well known and used in many packages.

Let us explore how to interpolate values 𝒉𝑖 in the
given un-ordered {〈𝒙𝑖 ,𝒉𝑖〉}1𝑀 data set. Of course,
there is a theoretical possibility to use a tessellation
in order to get an ordered unstructured mesh, but
this process is computationally very expensive as
the computational complexity of the tessellation
grows with the dimension k non-linearly and
complexity of the implementation grows as well.

On the other hand, there are interpolation
techniques applicable for un-ordered data sets. One
of such technique is based on Radial Basis
Functions (RBF) which is especially convenient for
the interpolation in the k-dimensional space,
especially if 𝑘 > 2. The RBF interpolation based on
radial basis functions is quite simple from a
mathematical point of view.

For an explanation of the RBF interpolation let
us consider the case, when ℎ𝑖 are scalar values. The
RBF interpolation is based on computing of the
distance of two points in the k -dimensional space
and is defined by a function [2], [3]

𝑓(𝒙) = �𝜆𝑗 𝜑��𝒙 − 𝒙𝑗��
𝑀

𝑗=1

= �𝜆𝑗 𝜑�𝑟𝑗�
𝑀

𝑗=1

𝑟𝑗 = �𝒙 − 𝒙𝑗�
It means that for the given data set {〈𝒙𝑖 ,ℎ𝑖〉}1𝑀,

where ℎ𝑖 are associated values to be interpolated
and 𝒙𝑖 are domain coordinates. We obtain a linear
system of equations

ℎ𝑖 = 𝑓(𝒙𝑖) = �𝜆𝑗 𝜑��𝒙𝑖 − 𝒙𝑗��
𝑁

𝑗=1

 𝑖 = 1, … ,𝑀

where: 𝜆𝑗 are weights to be computed. Due to some
stability issues, usually a polynomial 𝑃𝑘(𝒙) of a
degree k is added to the form, i.e.

ℎ𝑖 = 𝑓(𝒙𝑖) = �𝜆𝑗 𝜑��𝒙𝑖 − 𝒙𝑗��
𝑀

𝑗=1

 + 𝑃𝑘(𝒙𝑖)

 𝑖 = 1, … ,𝑀

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 502 Issue 5, Volume 12, May 2013

For a practical use a linear polynomial
 𝑃1(𝒙) = 𝒂𝑇𝒙 + 𝑎0

in many applications. So the RBF interpolation
function has the form:

𝑓(𝒙𝑖) = �𝜆𝑗 𝜑��𝒙𝑖 − 𝒙𝑗��
𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊 + 𝑎0

= �𝜆𝑗 𝜑𝑖,𝑗

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊 + 𝑎0

where
ℎ𝑖 = 𝑓(𝒙𝑖) 𝑖 = 1, … ,𝑀

and additional conditions are applied:

�𝜆𝑖 = 0
𝑀

𝑗=1

 �𝜆𝑖𝒙𝑖 = 𝟎
𝑀

𝑗=1

It can be seen that for k-dimensional case a
system of (𝑀 + 𝑘 + 1) LSE has to be solved, where
M is a number of points in the dataset and k is the
dimensionality of data.

For k=2 vectors xi and a are given as
𝒙𝑖 = [𝑥𝑖 ,𝑦𝑖]𝑇 and 𝒂 = �𝑎𝑥 ,𝑎𝑦�

𝑇
. Using the matrix

notation we can write for 2-dimensions:

⎣
⎢
⎢
⎢
⎢
⎡
𝜑1,1 . . 𝜑1,𝑀 𝑥1 𝑦1 1

: ⋱ : : : :
𝜑𝑀,1 . . 𝜑𝑀,𝑀 𝑥𝑀 𝑦𝑀 1
𝑥1 . . 𝑥𝑀 0 0 0
𝑦1 . . 𝑦𝑀 0 0 0
1 . . 1 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜆1
:
𝜆𝑀
𝑎𝑥
𝑎𝑦
𝑎0 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
ℎ1
:
ℎ𝑀
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎤

� 𝑩 𝑷
𝑷𝑇 𝟎� �

𝝀
𝒂� = �𝒇

𝟎
� 𝑨𝒙 = 𝒃

𝒂𝑇 𝒙𝒊 + 𝑎0 = 𝑎𝑥 𝑥𝑖 + 𝑎𝑦 𝑦𝑖 + 𝑎0

It can be seen that for the two-dimensional case
and M points given a system of (𝑀 + 3) linear
equations has to be solved. If “global” functions, e.g.
TPS (𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟), are used the matrix B is
“full”, if “local” functions (Compactly supported
RBF – CSRBF) are used, the matrix B can be sparse.

The radial basis functions interpolation was
originally introduced by [5] by introduction of
multiquadric method in 1971, which he called
Radial Basis Function (RBF) method. Since then
many different RFB interpolation schemes have
been developed with some specific properties, e.g.
Thin-Plate Spline function 𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟, which is
called TPS [4], a function 𝜑(𝑟) = 𝑒−(𝜖𝑟)2 was
proposed by [9] and [12] introduced Compactly
Supported RBF (CSRBF) as

𝜑(𝑟) = �(1 − 𝑟)𝑞 𝑃(𝑟), 0 ≤ 𝑟 ≤ 1
 0, 𝑟 > 1

� ,

where: 𝑃(𝑟) is a polynomial function and q is a
parameter.

Theoretical problems with stability and
solvability were solved by [6] and [13]. Generally,
there are two main groups of the RBFs:

• “global” – a typical example is TPS function
• “local” – Compactly supported RBF (CSRBF)
If the “global” functions are taken, the matrix A

of the LSE is full and for large M is becoming ill
conditioned and problems with convergence can be
expected.

On the other hand if the CSRBFs are taken, the
matrix A is becoming relatively sparse, i.e.
computation of the LSE will be faster, but we need
to carefully select the scaling factor and the final
function tends to be “blobby” shaped.

“Global“ functions 𝜙(𝑟)

Thin-Plate Spline (TPS) rr log2
Gauss function ()()2exp rε−

Inverse Quadric (IQ) ()()211 rε+
Inverse multiquadric

(IMQ) ()211 rε+

Multiquadric (MQ) ()21 rε+

Table 1 Typical examples of “global” functions”

ID Function
1 +−)1(r
2)13()1(3 +− + rr
3)158()1(25 ++− + rrr
4 2)1(+− r
5)14()1(4 +− + rr
6)31835()1(26 ++− + rrr
7)182532()1(238 +++− + rrrr
8 3)1(+− r
9)15()1(3 +− + rr

10)1716()1(27 ++− + rrr

Table 2 Typical examples of “local” functions -
CSRBF [13]

Tab.2 presents typical examples of CSRBFs. They
are defined for the interval (0, 1), but for the
practical use a scaling is used, i.e. the value r is
multiplied by a scaling factor α, where 0<α<1. Fig.1

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 503 Issue 5, Volume 12, May 2013

shows behavior of selected CSRBF; on the x axis is
a radius value r (negative part is just for illustration
of the symmetry properties).

Fig.1 Geometrical properties of CSRBF [13]

4 Matrix Inversion and Multiplication
Matrix multiplication, inversion and solution of a
linear system of equations (LSE) are probably the
most frequent operations used in computations. RBF
interpolation leads naturally to a system of linear
equations to be solved. However in the case of
“global” RBF the matrix is full, large and ill
conditioned. In the case of scalar and static values
an iterative methods can be used to obtain a solution.
Nevertheless for a multidimensional data
represented by

 𝒉 = [ℎ1, … , ℎ𝑘]𝑇

for static data or for dynamic data, i.e.

 𝒉(𝑡) = [ℎ1(𝑡), … , ℎ𝑘(𝑡)]𝑇

increment methods cannot be used and the system of
linear system of equations representing RBF
interpolation has to be solved by an inverse matrix
computation due to time and computational stability.

Let us consider some operations with block
matrices again (we assume that all operations are
correct and matrices are non-singular in general etc.).
The matrix inversion is defined as follows:

�𝑨 𝑩
𝑪 𝑫�

−1

= � (𝑨 − 𝑩𝑫−1𝑪)−1 −𝑨−1𝑩(𝑫 − 𝑪𝑨−1𝑩)−1

−(𝑫− 𝑪𝑨−1𝑩)−1𝑪𝑨−1 (𝑫− 𝑪𝑨−1𝑩)−1 �

Let us consider a matrix M of (n+m)×(n+m) and a
matrix A of n×n in the following block form:

𝑴 = � 𝑨 𝑩
𝑩𝑇 𝑫�

Then the inverse of the matrix 𝑴 applying the rule
above can be written as:

� 𝑨 𝑩
𝑩𝑇 𝑫

�
−1

=

 � (𝑨 − 𝑩𝑫−1𝑩𝑇)−1 −𝑨−1𝑩(𝑫− 𝑩𝑇𝑨−1𝑩)−1

−(𝑫 −𝑩𝑇𝑨−1𝑩)−1𝑩𝑇𝑨−1 (𝑫− 𝑩𝑇𝑨−1𝑩)−1 �

where the matrix 𝑨−1 is known and matrices 𝑨, 𝑨−1,
𝑫 and 𝑫−1 are symmetrical and semi-positive
definite.

Computation complexities are as follow:

𝑸 = 𝑨−1𝑩 O(mn2)
𝑻 = 𝑩𝑇𝑸
= 𝑩𝑇𝑨−1𝑩

O(m2n)

𝑫−1 O(m3)
𝑹 = 𝑫−1𝑩𝑇 O(m2n)
𝑾 = 𝑩𝑹 O(mn2)
𝒁 = 𝑫− 𝑻 O(m2)

Table 3 : Computational complexity

By definition and symmetry

𝑻 = 𝑻𝑇 𝑸𝑇 = 𝑩𝑇𝑨−1 𝒁 = 𝒁𝑇
We can further simplify the matrix inversion. Then

�𝑨 𝑩
𝑪 𝑫�

−1

= �
(𝑨 − 𝑩𝑹)−1 −𝑨−1𝑩(𝑫 − 𝑩𝑇𝑸)−1

−(𝑫− 𝑩𝑇𝑸)−1𝑩𝑻𝑨−1 (𝑫 −𝑩𝑇𝑸)−1
�

= � (𝑨 −𝑾)−1 −𝑨−1𝑩(𝑫− 𝑻)−1

−(𝑫− 𝑻)−1𝑸𝑇 (𝑫− 𝑻)−1 �

= �
(𝑨 −𝑾)−1 −𝑸 𝒁−1

−𝒁−1𝑸𝑇 𝒁−1
�

Finally we get

𝑴−𝟏 = �𝑨 𝑩
𝑪 𝑫�

−1
= �

(𝑨 −𝑾)−1 −𝑸 𝒁−1

−(𝑸 𝒁−1)𝑇 𝒁−1
�

In the worst case of n = m .

𝒁−1 O(m3)
(𝑨 −𝑾)−1 O(n3)

𝑸 𝒁−1 O(m2n)

Table 4: Computational complexity

It means that we have a formula to solve a

system of linear equations for the special case when
the matrix is symmetrical. According to the RBF
interpolation definition above, the matrix 𝑨 defines
RBF interpolation of 𝑛 − 3 points in the 𝐸2 case and

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 504 Issue 5, Volume 12, May 2013

𝑛 − 4 points in the 𝐸3 case. Other matrices express
the 𝑚 points added to the interpolation.

As the inversion and matrix multiplication
operations are 𝑂(𝑁3) complexity then for 𝑚 = 𝑛
the complexity of the matrix 𝑴−𝟏 computation
is 𝑂(𝑁3) , while sub-matrix operations are of
𝑂((𝑁

2
)3) complexity, i.e. the TOTAL cost expected

is O((2n)3) = 8 O(n3), if the inverse of 𝑴 is
computed and the computation will be slightly faster
and inversion operation will be slightly more stable
as well.

From the efficiency point of view, the worst
case is for 𝑚 = 𝑛 . For the case of m ≠ n the
efficiency of computation will be higher. Total
computational complexity for 𝑚 ≠ 𝑛 given as

No of operation with the given
complexity

O(mn2) 2
O(m2n) 2
O(m3) 2
O(n3) 1
O(n2) 1

Table 5: For m=1, i.e. for one point insertion, the
complexity is O(n2) only.

It can be seen that there are the following critical

operations:

Matrix storing – as we expect to process many
points, i.e. number of points

𝑛 ∈< 103, 106 >,
and memory requirements grow with 𝑂(𝑛2)
complexity, i.e. memory consumption will be

𝑂𝑚𝑒𝑚 ∈< 106, 1012 >
which is becoming prohibitive also from the
stability issue. As the matrices 𝑴 , 𝑫 , 𝑨 are
symmetrical we can save approx. ½ of memory
requirements.

Matrix multiplication – this operation seems to be
simple as the standard formula

𝑐𝑖𝑗 = �𝑎𝑖𝑘𝑏𝑘𝑗

𝑝

𝑘=1

𝑖 = 1, … ,𝑛 𝑗 − 1, … ,𝑝 is used. However this
operation is of 𝑂(𝑛3) in general. There are some
more effective algorithms for special cases, e.g.
Strassen’s algorithm [30], [W2] with computational
complexity 𝑂(𝑛2.81) , but matrices must be of
2𝑘 × 2𝑘 sizes, or Coopersmith-Winograd’s
algorithm [29] with 𝑂(𝑛2.38) complexity. However

it should be noted that algorithms are based on
recursion, time for memory allocation for matrices
and for data transmissions are not considered.

It should be noted, that umerical precision due
to many matrix operations is weakly stable [W3].

Experiments made recently showed that those
factors significantly decrease the efficiency of the
Strassen’s algorithm.

The Strassen’s algorithm for matrices
multiplication is actually based on the observation
that

𝑏𝑐 + 𝑎𝑑 = (𝑎 + 𝑏)(𝑐 + 𝑑) − 𝑎𝑐 − 𝑏𝑑

so instead of having 4 multiplications we need only
3 multiplications as follows (it is expected that all
operations are valid). Let us consider

�𝑨11 𝑨12
𝑨21 𝑨22

� × �𝑩11 𝑩12
𝑩21 𝑩22

� = �𝑪11 𝑪12
𝑪21 𝑪22

�

Then
𝑴1 = (𝑨11 + 𝑨22) × (𝑩11 + 𝑩22)
𝑴2 = (𝑨21 + 𝑨22) × 𝑩11
𝑴3 = 𝑨11 × (𝑩12 − 𝑩22)
𝑴4 = 𝑨22 × (𝑩21 − 𝑩11)
𝑴5 = (𝑨11 + 𝑨12) × 𝑩22
𝑴6 = (𝑨21 − 𝑨11) × (𝑩11 + 𝑩12)
𝑴7 = (𝑨12 − 𝑨22) × (𝑩21 + 𝑩22)

Then the final matrix 𝑪 is given as
𝑪11 = 𝑴1 + 𝑴4 −𝑴5 + 𝑴7
𝑪12 = 𝑴3 + 𝑴5
𝑪21 = 𝑴2 + 𝑴4
𝑪22 = 𝑴1 −𝑴2 + 𝑴3 + 𝑴6

If the above rules are applied recursively we get
algorithm complexity 𝑂�𝑛𝑙𝑜𝑔27� ≈ 𝑂(𝑛2.81) . It
should be noted that the matrices must be of
2𝑘 × 2𝑘 size and there is a lot of memory allocation
and data transmission from/to a matrix.

Let us more explore our case of the RFB
interpolation, when the RBF matrix is symmetrical
and the inverse matrix is symmetrical as well. It
means that we do not need to store 𝑛2 elements, but
only 𝑛(𝑛 − 1) 2⁄ , which is significantly lower
memory requirements. It should be noted that a
result of multiplication of two symmetrical matrices
is not generally a symmetrical matrix.

procedure MULT (in: A symmetrical, B; out: C);
Matrix A: symmetrical; B: general; C: general
Sizes are to be legal
Initialization
cij := 0; cij := aii*bij; # for all i,j

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 505 Issue 5, Volume 12, May 2013

for i := 1, n-1
 for j := i+1, n
 for k := i+1, n
 { cij +:= aik*bkj;
 cki +:= aik*bkj
 # Coherence of caching
 # q := bkj ;
 # cij +:= aik*q;
 # cki +:= aik*q
 }

Algorithm 1

As an element 𝑎𝑖𝑗 in a matrix is stored in a linear
data structure as 𝑏𝑞, i.e. in a vector, a new mapping
function, if the matrix 𝑨 is stored “row by row”
compressed for, as

𝑞 = (𝑖 − 1)𝑛 + 𝑗 − 𝑖 + 1 = 𝑖𝑛 − 𝑛 + 𝑗 − 𝑖 + 1
= 𝑖(𝑛 − 1) − (𝑛 − 1)𝑗
= (𝑖 − 𝑗)(𝑛 − 1) for 𝑖 < 𝑗

Now, the formula for the matrix multiplication for a
symmetric matrix 𝑨 has to be modified, see Alg.1.

It can be seen that the computational complexity
is 2 (𝑛 − 1) 1

2
𝑛 1
2
𝑛 = 1

2
𝑛2(𝑛 − 1) which is again

 𝑂(𝑛3), but computation will be faster about four
times.

Matrix inversion is generally of 𝑂(𝑛3) , i.e.
1
6
𝑛(𝑛 + 1)(𝑛 + 2) − 1

2
𝑛(𝑛 + 1) , complexity, if

explicit solution is made. The explicit solution is
necessary in the case of multidimensional or
dynamic (t-variant) data interpolation.

5 Incremental computation
As for many applications, the number of points is
high and some data are to be deleted and new
inserted,.

It is not possible to recompute the whole LSE
due to computational complexity. In this case the
incremental computation of RBF is to be used. The
algorithm itself is simple [28] and can be simply
described as follows:

Incremental RBF computation
The main question to be answered is:

Is it possible to use already computed RFB inter-
polation if a new point is to be included into the
data set?

If the answer is positive it should lead to significant
decrease of computational complexity.

In the following we will present how a new point
can be inserted, a selected point can be removed and
also how to select the best candidate for a removal
according to an error caused by this point removal.

Let us consider some operations with block
matrices (we will assume that all operations are
correct and matrices are non-singular in general etc.).

�𝑨 𝑩
𝑪 𝑫�

−1

= � (𝑨 − 𝑩𝑫−1𝑪)−1 −𝑨−1𝑩(𝑫− 𝑪𝑨−1𝑩)−1

−(𝑫− 𝑪𝑨−1𝑩)−1𝑪𝑨−1 (𝑫 − 𝑪𝑨−1𝑩)−1 �

Let us consider a matrix M of (n+1)×(n+1) and a
matrix 𝑨 of n×n in the following block form:

𝑴 = � 𝑨 𝒃
𝒃𝑇 𝑐�

Then the inverse of the matrix 𝑴 applying the rule
above can be written as:

𝑴−1 =

⎣
⎢
⎢
⎡�𝑨 −

1
𝑐
𝒃𝒃𝑇�

−1
−

1
𝑘
𝑨−1𝒃

−
1
𝑘
𝒃𝑇𝑨−1

1
𝑘 ⎦

⎥
⎥
⎤

= �
𝑨−1 +

1
𝑘
𝑨−1𝒃𝒃𝑇𝑨−1 −

1
𝑘
𝑨−1𝒃

−
1
𝑘
𝒃𝑇𝑨−1

1
𝑘

�

where: 𝑘 = 𝑐 − 𝒃𝑇𝑨−1𝒃
We can easily simplify this equation if the matrix

A is symmetrical as:

𝝃 = 𝑨−1𝒃 𝑘 = 𝑐 − 𝝃𝑻𝒃

𝑴−1 =
1
𝑘
�𝑘𝑨

−1 + 𝝃⨂𝝃𝑻 −𝝃
−𝝃𝑻 1

�

where: 𝝃⨂𝝃𝑻 means the tensor multiplication. It can
be seen that all computations needed are of 𝑂(𝑁2)
computational complexity.

It means that we can compute an inverse matrix
incrementally with 𝑂(𝑁2) complexity instead of
𝑂(𝑁3) complexity required originally in this
specific case. It can be seen that the structure of the
matrix 𝑴 is “similar to the matrix of the RBF
specification.

Now, there is a question how the incremental
computation of an inverse matrix can be used for
RBF interpolation?

We know that the matrix 𝑨 in the equation
𝑨𝒙 = 𝒃 is symmetrical and non-singular if
appropriate rules for RBFs are kept.

Point Insertion

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 506 Issue 5, Volume 12, May 2013

Let us imagine a simple situation. We have already
computed the interpolation for N points and we need
to include a new point into the given data set.
A brute force approach of full RBF computation on
the new data set can be applied with 𝑂(𝑁3)
complexity computation.

Let us consider RBF interpolation for N+1 points
and the following system of equations is obtained:

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜙1,1 𝜙1,𝑁 𝜙1,𝑁+1 𝑥1 𝑦1 1

: . . : : : 1
𝜙𝑁,1 𝜙𝑁,𝑁 𝜙𝑁,𝑁+1 𝑥𝑁 𝑦𝑁 1
𝜙𝑁+1,1 𝜙𝑁+1,𝑁 𝜙𝑁+1,𝑁+1 𝑥𝑁+1 𝑦𝑁+1 1
𝑥1 𝑥𝑁 𝑥𝑁+1 0 0 0
𝑦1 𝑦𝑁 𝑦𝑁 0 0 0
1 1 1 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜆1
:
𝜆𝑁
𝜆𝑁+1
𝑎𝑥
𝑎𝑦
𝑎0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑓1
:
𝑓𝑁
𝑓𝑁+1

0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 where: 𝜙𝑖,𝑗 = 𝜙𝑗,𝑖

Reordering the equations above we get:

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 𝑥1 𝑥𝑁 𝑥𝑁+1
0 0 0 𝑦1 𝑦𝑁 𝑦𝑁+1
0 0 0 1 1 1
𝑥1 𝑦1 1 𝜙1,1 𝜙1,𝑁 𝜙1,𝑁+1
: : : : : :
𝑥𝑁 𝑦𝑁 1 𝜙𝑁,1 𝜙𝑁,𝑁 𝜙𝑁,𝑁+1
𝑥𝑁+1 𝑦𝑁+1 1 𝜙𝑁+1,1 𝜙𝑁+1,𝑁 𝜙𝑁+1,𝑁+1⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑎𝑥
𝑎𝑦
𝑎0
𝜆1
:
𝜆𝑁
𝜆𝑁+1⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
𝑓1
:
𝑓𝑁
𝑓𝑁+1⎦

⎥
⎥
⎥
⎥
⎥
⎤

We can see that last row and last column is
“inserted”. As RBF functions are symmetrical the
recently derived formula for iterative computation
of the inverse function can be used. So the RBF
interpolation is given by the matrix M as

𝑴 = � 𝑨 𝒃
𝒃𝑇 𝑐�

where the matrix A is the RBF matrix (N+3)×(N+3)
and the vector b (N+3) and scalar value c are
defined as:

𝒃 = [𝑥𝑁+1 𝑦𝑁+1 1 𝜙1,𝑁+1 . . 𝜙𝑁,𝑁+1]𝑇

𝑐 = 𝜙𝑁+1,𝑁+1

It means that we know how to compute the matrix
𝑴−1 if the matrix 𝑨−1 is known.

That is exactly what we wanted!

Recently we have proved that iterative computation
of inverse function is of 𝑂(𝑁2) complexity, which
offers a significant performance improvement for
points insertion. It should be noted that some
operations can be implemented more effectively,
especially 𝝃⨂𝝃𝑻 = 𝑨−1𝒃𝒃𝑇𝑨−1 as the matrix 𝑨−1
is symmetrical etc.

Point Removal
In some cases it is necessary to remove a point from
the given data set. It is actually an inverse operation
to the insertion operation described above. Let us
consider a matrix M of the size (N+1)×(N+1) as

𝑴 = � 𝑨 𝒃
𝒃𝑇 𝑐�

Now, the inverse matrix 𝑨−𝟏 is known and we want
to compute matrix A-1, which is of the size N×N.
Recently we derived opposite rule:

𝑴 = � 𝑨 𝒃
𝒃𝑇 𝑐�

𝝃 = 𝑨−1𝒃 𝑘 = 𝑐 − 𝝃𝑻𝒃

𝑴−1 = �
𝑨−1 +

1
𝑘
𝝃⨂𝝃𝑻 −

1
𝑘
𝝃

−
1
𝑘
𝝃𝑻

1
𝑘

� = �𝑸11 𝑸12
𝑸21 𝑸22

�

It can be seen that

𝑸11 = 𝑨−1 +
1
𝑘
𝝃⨂𝝃𝑻

and therefore

𝑨−1 = 𝑸11 −
1
𝑘
𝝃⨂𝝃𝑻

Now we have both operations, i.e. insertion and
removal, with effective computation of 𝑂(𝑁2)
computational complexity instead of 𝑂(𝑁3) . It
should be noted that vectors related to the point
assigned for a removal must be in the last row and
last column of the matrix M-1.

Point selection
As the number of points within the given data set
could be high, the point removal might be driven by
a requirement of removing a point which causes a
minimal error of the interpolation. This is a tricky
requirement as there is probably no general answer.
The requirement should include additional
information which interval of x is to be considered.
Generally we have a function

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 507 Issue 5, Volume 12, May 2013

𝑓(𝒙) = �𝜆𝑖

𝑁

𝑖=1

𝜙𝑖(𝒙) + 𝑃𝑘(𝒙)

and we want to remove a point xj which causes a
minimal error 𝜀𝑗 of interpolation, i.e.

𝑓𝑗(𝒙) = � 𝜆𝑖

𝑁

𝑖=1,𝑖≠𝑗

𝜙𝑖(𝒙) + 𝑃𝑘(𝒙)

and we want to minimize

𝜀𝑗 = � �𝑓(𝒙) − 𝑓𝑗(𝒙)� 𝑑𝒙
Ω

where 𝛺 is the interval on which the interpolation is
to be made. It means that if the point xj is removed
the error εj is determined as:

𝜀𝑗 = 𝜆𝑗 �𝜙��𝒙 − 𝒙𝑗��𝑑𝒙
Ω

As we know the interval 𝛺 on which the
interpolation is to be used, we can compute or
estimate the error 𝜀𝑗 for each point xj in the given
data set and select the best one. For many functions
𝜙 the error 𝜀𝑗 can be computed or estimated
analytically as the evaluation of 𝜀𝑗 is simple for
many functions, e.g.

�𝑟𝑚 ln𝑑𝑟 = 𝑟𝑚+1 ln 𝑟
𝑚 + 1

−
1

(𝑚 + 1)2

It means that for TPS function 𝑟2 ln 𝑟 the error
𝜀𝑘 is easy to evaluate. In the case of CSRBF the
estimation is even simpler as they have a limited
influence, so generally 𝜆𝑗 determines the error 𝜀𝑗.

It should be noted, that a selection of a point with
the lowest influence to the interpolation precision in
the given interval 𝛺 is of 𝑂(𝑁) complexity only.

We have shown a novel approach to RBF
computation which is convenient for larger data sets.
It is especially convenient for t-varying data and for
applications, where a “sliding window” is used.
Basic operations – point insertion and point removal
– have been introduced. These operations have O(N2)
computational complexity only, which makes a
significant difference from the original approach
used for RBFs computation.

6 RBF Approximation
The RBF interpolation relies on solution of a LSE
𝑨𝒙 = 𝒃 of the size M×M in principle, where M is a
number of the data processed. If the “global”
functions are used, the matrix 𝑨 is full, while if the
“local” functions are used (CSRBF), the matrix 𝑨 is
sparse.

However, in visualization applications it is
necessary to compute the final function 𝑓(𝒙) many
many times and even for already computed 𝜆𝑖

values, the computation of 𝑓(𝒙) is too expensive.
Therefore it is reasonable to significantly “reduce”
the dimensionality of the LSE 𝑨𝒙 = 𝒃. Of course,
we are now changing the interpolation property of
the RBF to approximation, i.e. the values computed
do not pass the given values exactly.

Probably the best way is to formulate the
problem using the Least Square Error approximation.
Let us consider the formulation of the RBF
interpolation again.

𝑓(𝒙𝑖) = �𝜆𝑗 𝜑��𝒙𝑖 − 𝝃𝑗��
𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊 + 𝑎0

ℎ𝑖 = 𝑓(𝒙𝑖) 𝑖 = 1, … ,𝑁

where: 𝝃𝑗 are not given points, but points in a pre-
defined “virtual mesh” as only coordinates are
needed (there is no tessellation needed). This
“virtual mesh” can be irregular, orthogonal, regular,
adaptive etc. For simplicity, let us consider the
two-dimensional squared (orthogonal) mesh in the
following example. Then the 𝝃𝑗 coordinates are the
corners of this mesh. It means that the given
scattered data will be actually “re-sampled”, e.g. to
the squared mesh.

New reference points ξ

Given points x

Fig.2. RBF approximation and points’ reduction

In many applications the given data sets are

heavily over sampled, or for the fast previews, e.g.
for the WEB applications, we can afford to “down
sample” the given data set. Therefore the question is
how to reduce the resulting size of LSE.

Let us consider that for the visualization
purposes we want to represent the final potential
field in k -dimensional space by 𝑃 values instead of
𝑀 and 𝑃 ≪ 𝑀. The reason is very simple as if we
need to compute the function 𝑓(𝒙) in many points,
the formula above needs to be evaluated many times.
We can expect that the number of evaluation 𝑄 can
be easily requested at 102 𝑀 of points (new points)
used for visualization.

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 508 Issue 5, Volume 12, May 2013

If we consider that 𝑄 ≥ 102 𝑀 and 𝑀 ≥ 102 𝑃
then the speed up factor in evaluation can be
easily about 𝟏𝟎𝟒 !

This formulation leads to a solution of a linear
system of equations 𝑨𝒙 = 𝒃 where number of
rows 𝑀 ≫ 𝑃, number of unknown [𝜆1 , … , 𝜆𝑃]𝑇. As
the application of RBF is targeted to high
dimensional visualization, it should be noted that the
polynomial is not requested for all kernels of the
RBF interpolation. However it is needed for
𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟 kernel function (TPS).

This reduces the size of the over determined
linear system of equations 𝑨𝒙 = 𝒃 significantly.
Such system can be solved by the Least Square
Method (LSM) as 𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃 or Singular Value
Decomposition (SVD) can be used.

⎣
⎢
⎢
⎢
⎡
𝜑1,1 ⋯ 𝜑1,𝑃
⋮ ⋱ ⋮

𝜑𝑖,1 . . 𝜑𝑖,𝑃
⋮ ⋱ ⋮

𝜑𝑀,1 ⋯ 𝜑𝑀,𝑃⎦
⎥
⎥
⎥
⎤

�
𝜆1
⋮
𝜆𝑃
� =

⎣
⎢
⎢
⎢
⎡
ℎ1
⋮
⋮
⋮
ℎ𝑀⎦

⎥
⎥
⎥
⎤

 𝑨𝒙 = 𝒃

The high dimensional data can be approximated for
visualization by RBF efficiently with a high
flexibility as it is possible to add additional points of
an area of interest to the mesh. It means that a user
can add some points to already given mesh and
represent easily some details if requested. It should
be noted that the use of LSM increases instability of
the LSE in general.

7 Experimental Evaluation
The RBF interpolation is a very powerful tool for
interpolation of data in k -dimensional space in
general. In order to demonstrate the functionality the
RBF, we have recently used RBF for reconstruction
of damaged images by a noise or by inpainting [26],
[28]. Also a surface reconstruction has been solved
by the RBF interpolation well. Fig.3a and Fig.3b
illustrates the power of the RBF interpolation [8],
[15], [24] for corrupted image reconstruction. The
RBF interpolation gives quite good results even if
the images are heavily damaged.

The advantages of RBF interpolation over the
other interpolations have been proved even though
that the RBF interpolation causes some additional
computational cost as the RBF is primarily targeted
for scattered data interpolation. Fig.4 presents speed
of the “standard” and incremental solution and Fig.5
resents the actual speed-up of computation for one
inserted or deleted point.

Fig.3a. Original image with 60% of damaged pixels

Fig.3b. Reconstructed image [13]

Fig.4: Comparison of “standard” and incremental method

Speed-up is defined as

𝜈 =
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑡𝑖𝑚𝑒𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙

Fig.5: Speed-up of the incremental method

It can be seen that the incremental approach is much
faster as expected as the incremental computation is

0

1

10

100

1,000

10,000

 100 160 250 400 630 1 000

time [ms]

number of points

Standard Incremental

20
40
60
80

100
120
140
160
180

 100 160 250 400 630 1 000
number of points

speed-up

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 509 Issue 5, Volume 12, May 2013

of 𝑂(𝑛2) while the total re-computation of the RBF
interpolation is of 𝑂(𝑛3) complexity.

8 Conclusion
The radial basis functions (RBF) interpolation is a
representative interpolation method for un-ordered
scattered data sets. It is well suited approach for
solving problems without meshing the data domain.
RBF interpolations are used in many computational
fields, e.g. in solution of partial differential
equations, DEMs and support the k -dimensional
space naturally.

This paper briefly describes a principle of the
RBF incremental computation and shows the
decrease of the computational complexity from
approx. 𝑂(𝑁3) to 𝑂(𝑁2) for a point insertion and a
point removal.

The paper also presents a method for
“resampling” the data processed as the
approximation is acceptable in many applications,
namely in visualization. This approach enables to
increase details for visualization by adding new
points to the “virtual mesh”, if more details are
needed. It is necessary to mention, that there is no
mesh actually needed nor generated and only points
of the “virtual mesh” need to be defined.

Acknowledgment: The author thanks to
colleagues at the University of West Bohemia
(UWB) in Plzen and at the VSB-Technical
University (VSB) in Ostrava for their critical
comments and constructive suggestions, to
anonymous reviewers for their critical view and
comments that helped to improve the manuscript.
Special thanks belong to former PhD and MSc.
students at the UWB Vit Ondracka, Lukas Loukota,
Karel Uhlir, Jiri Zapletal and to Jan Hobza for his
implementation on GPU and verification of the
GPU based image reconstruction.

The project was supported by the MSMT CR,
projects No.LH12181 and ME10060.

References:
[1] B. J. Ch. Baxter, The Interpolation Theory of

Radial Basis Functions, PhD thesis, Trinity
College, Cambridge University, U.K., 1992

[2] M. Bertalmio, G. Sapiro, C. Ballester, V.
Caselles, Image Inpainting, Proceedings of
SIGGRAPH’00, Computer Graphics, New
Orleans, 23-28, pp.417-424, 2000

[3] J. C. Carr, R. K. Beatson, J. B. Cherrie, T.J.
Mitchell, W.R. Fright, B. C. McCallum, T. R.
Evans, Reconstruction and representation of 3D

objects with radial basis functions, Computer
Graphics, SIGGRAPH 2001 proceedings, pp.
67-76, 2001.

[4] J. Duchon, Splines minimizing rotation-
invariant semi-norms in Sobolev space,
Constructive Theory of Functions of Several
Variables, Springer Lecture Notes in Math, 21,
pp. 85-100, 1977

[5] L. R. Hardy, Multiquadric equations of
topography and other irregular surfaces, J.
Geophy. Res., 76,pp. 1905-1915, 1971

[6] C. A. Micchelli, Interpolation of scattered data:
distance matrices and conditionally positive
definite functions, Constr. Approx., No.2, pp.
11-22, 1986

[7] S. Jakobsson, B. Andersson, F. Edelvik,
Rational radial basis function interpolation with
applications to antenna design, Journal of
Computational and Applied Mathematics, Vol.
233(4), pp. 889-904, December 2009.

[8] R. Pan, V. Skala, Implicit surface modeling
suitable for inside/outside tests with radial basis
functions, 10th International Conference on
Computer Aided Design and Computer
Graphics,DOI.10.1109/CADCG.2007.4407842
pp.28, 2007

[9] R. Pan, V. Skala, A two level approach to
implicit modeling with compactly supported
radial basis functions, Engineering and
Computers, ISSN 0177-0667, Vol.27. No.3.,
pp.299-307, Springer, 2011

[10] R. Pan, V. Skala, Continuous Global
Optimization in Surface Reconstruction from
an Oriented Point Cloud, Computer Aided
Design, ISSN 0010-4485, Vol.43, No.8,
pp.896-901, Elsevier, 2011

[11] R. Pan, V. Skala, Surface Reconstruction with
higher-order smoothness, The Visual Computer,
ISSN 0178-2789, Vol.28, No.2., pp.155-162,
Springer, 2012

[12] I. P. Schagen, Interpolation in Two Dimension
– A New Technique, J. Inst. Maths Applics, 23,
pp. 53-59, 1979

[13] K. Uhlir, V. Skala, Radial basis function use
for the restoration of damaged images,
Computer vision and graphics. Dordrecht:
Springer, ISSN 1381-6446, pp. 839-844. 2006

[14] Ch. C. L.Wang, T.-H. Kwok, Interactive Image
Inpainting using DCT Based Exemplar
Matching, ISVC 2009, LNCS 5876, pp.709-718,
2009

[15] W. Wendland, Computational aspects of radial
basis function approximation, in K. Jetter et al.
(eds.) Topics in Multivariate Approximation
and Interpolation, Elsevier, pp. 231-256, 2005.

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 510 Issue 5, Volume 12, May 2013

[16] G. B. Wright, Radial Basis Function
Interpolation: Numerical and Analytical
Developments, University of Colorado, PhD
Thesis, 2003.

[17] J. Zapletal, P. Vanecek, V. Skala, RBF-based
Image Restoration Utilizing Auxiliary Points,
CGI 2009 proceedings, ACM, ISBN 978-
60558-687-8, pp.39-44, 2009.

[18] Y. Ohtake, A. Belyaev, H.-P Seidel, 3D
Scattered Data Interpolation and
Approximation with Multilevel Compactly
Supported RBFs, Graphical Models, Vol.67,
No.3., pp.150-165, 2005.

[19] V. Skala, Barycentric Coordinates Computation
in Homogeneous Coordinates, Computers &
Graphics, Elsevier, ISSN 0097-8493, Vol. 32,
No.1, pp.120-127, 2008

[20] V. Skala, Geometric Computation, Duality and
Projective Space, IW-LGK workshop
proceedings, pp.105-111, Dresden University
of Technology, 2011

[21] V.Skala, V. Ondracka, A Precision of
Computation in the Projective Space, Recent
Researches in Computer Science, 15th WSEAS
Int.Conference on Computers, Corfu, pp.35-40,
ISBN 978-1-61804-019-0, Greece, 2011

[22] V. Skala, Incremental Radial Basis Function
Computation for Neural Networks, WSEAS
Transactions on Computers, Issue 11, Vol.10,
pp. 367-378, ISSN 1109-2750,2011.

[23] V. Skala, Robust Computation in Engineering,
Geometry and Duality – TUTORIAL, 7th
Int.Conf. on Systems, ICONS 2012, St. Gilles,
Reunion Island, IARIA, 2011

[24] V. Skala, Interpolation and Intersection
Algorithms and GPU, ICONS 2012, Saint
Gilles, Reunion Island, IARIA, ISBN: 978-1-
61208-184-7, pp. 193-198, 2012

[25] V. Skala, Radial Basis Functions for High
Dimensional Visualization, VisGra - ICONS
2012, Saint Gilles, Reunion Island, IARIA,
ISBN: 978-1-61208-184-7, pp. 218-222, 2012

[26] V. Skala, Radial Basis Functions: Interpolation
and Applications - An Incremental Approach,
Applied Mathematics, Simulation and Modeling
- ASM 2010 conference, NAUN, ISSN 1792-
4332, ISBN 978-960-474-210-3, Greece,
pp.209-213, 2010

[27] V. Skala, Duality and Intersection Computation
in Projective Space with GPU support, Applied
Mathematics, Simulation and Modeling - ASM
conference, NAUN, pp.66-71, ISSN 1792-4332,
ISBN 978-960-474-210-3, Greece,, 2010

[28] V. Skala, Progressive RBF Interpolation,
Afrigraph 2010, pp.17-20, ACM, ISBN:978-1-
4503-0118-3, 2010

[29] D. Coppersmith and S. Winograd, Matrix
Multiplication via Arithmetic Programming,
J.Symb. Comput. 9, 251-280, 1990.

[30] V. Strassen, Gaussian Elimination is Not
Optimal, Numerische Mathematik 13, 354-356,
1969.

WEB references
[W1] FastRBF: http://www.farfieldtechnology.com/.

<retrieved: 2012-08-17>
[W2] Strassen’s Algorithm:

http://en.wikipedia.org/wiki/Strassen_algorithm
<retrieved: 2012-08-17>

[W3] http://mathworld.wolfram.com/StrassenFormula
s.html
<retrieved: 2012-08-17>

Appendix A
It should be noted that a result of multiplication of
two symmetrical matrices is not generally a
symmetrical matrix, e.g.

�𝑎 𝑏
𝑏 𝑐� �

𝑑 𝑒
𝑒 𝑓� = �𝑎𝑑 + 𝑏𝑒 𝑎𝑒 + 𝑏𝑓

𝑏𝑑 + 𝑐𝑒 𝑏𝑒 + 𝑐𝑓�

Appendix B

Multiplication 𝑪3,2 = 𝑨3,3 × 𝑩3,2

𝑐11 = 𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31
𝑐21 = 𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31
𝑐31 = 𝑎31𝑏11 + 𝑎32𝑏21 + 𝑎33𝑏31

𝑐12 = 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32
𝑐22 = 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32
𝑐32 = 𝑎31𝑏12 + 𝑎32𝑏22 + 𝑎33𝑏32

If the matrix 𝑨 is symmetrical, then only the upper
triangular part is to be stored in a linear structure
as 𝑎𝑖𝑘 = 𝑎𝑘𝑖. This also simplifies the multiplication
algorithm for

 𝑪 = 𝑨 × 𝑩

WSEAS TRANSACTIONS on MATHEMATICS Vaclav Skala

E-ISSN: 2224-2880 511 Issue 5, Volume 12, May 2013

http://www.farfieldtechnology.com/�
http://en.wikipedia.org/wiki/Strassen_algorithm�
http://mathworld.wolfram.com/StrassenFormulas.html�
http://mathworld.wolfram.com/StrassenFormulas.html�

